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Office hours

• Erdem:
• Friday, 11:00am – 12:00noon, PHE 214

• Ishika:
• Thursday, 3:30pm – 4:30pm, RTH 4th Floor Lounge
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Online resources

• Course website: https://liralab.usc.edu/csci699/ 

• Piazza: https://piazza.com/usc/fall2024/csci699

• Gradescope: https://www.gradescope.com/courses/820822
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What is a robot?
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• An embodied artificial intelligence

• A machine that can autonomously carry out useful work

• An artificial device that can sense its environment and 
purposefully act on or in that environment

Robotics: A Very Short Introduction
Winfield, 2012



See-think-act cycle
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Autonomous Mobile Robots
Siegwart et al.



Robot learning
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Autonomous Mobile Robots
Siegwart et al.



Why robot learning?

Designing controllers is hard
• Requires good understanding of the system

• Doesn’t scale well to high-dimensional systems

• “Manipulation breaks all the rigorous/reliable approaches I know for control.” 
– Russ Tedrake (MIT / TRI)
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Prerequisites
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• Probability theory

• Calculus

• Linear algebra

• At least one programming language (preferably, Python)
• Programming assignments will be in Python.

• Recommended:
• Familiarity with basic concepts in machine learning



What’s covered?
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• Basics of…
• Robotics

• Machine learning

• Computer vision

• Representation learning

• Reinforcement learning

• Imitation learning / IRL

• Learning from human feedback

• Sim-to-real transfer

• Meta-learning

• Safe and robust learning

• Multi-agent learning

• Robot learning using natural 
language



What’s NOT covered?
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Autonomous Mobile Robots
Siegwart et al.



What’s NOT covered?
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• Robot operating system (ROS)
• CSCI 545: Robotics

• Simultaneous localization and mapping (SLAM)
• CSCI 545: Robotics

• Grasping and manipulation
• CSCI 699: Deep Learning for Robotic Manipulation



Textbook & Readings
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• No textbook is required.

• All readings will be available on course website.

• If I were to recommend textbooks for this class…
• Reinforcement Learning: An Introduction by Sutton and Barto

• Modern Adaptive Control and Reinforcement Learning (MACRL) by 
Bagnell, Boots, and Choudhury

• Principles of Robot Autonomy by Lorenzetti and Pavone



Assignments
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• One class project (40%)

• One homework assignment (15%)

• Three paper presentations (3 x 15%)



Homework assignments

• Three homework assignments in total – you choose which 
one(s) you would like to do!
• Basics of robotics & machine learning & computer vision

• Reinforcement learning

• Imitation learning & intent inference & shared autonomy

• Both theoretical and programming components

• Programming parts will be in Python

• No ROS knowledge required

• The submissions will be online, due at 12 midnight
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Class presentation

• 15-25 minutes presentation, depending on the week/paper

• Should include an extensive discussion of the paper
• Motivation

• Prior work

• Methods

• Results

• Discussion
• Both the positive and the negative aspects of the paper!

• 5 minutes Q&A
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Course project

• The project will be done in groups of 2 or 3.

• Feel free to reach out to me if you have a good reason to do it 
individually or as a group of more than 3 students.
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Course project

The project must have both robotics and machine learning 
components.

Examples:

• Application-dependent improvements over an existing robot 
learning method

• A new application of an existing robot learning technique

• A novel method that may have potential benefits
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Course project
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October 20th 

November 17th 

December 6th 

December 8th 

December 15th 



Today…

• General course information

• Basics of robotics

• Fundamentals of machine learning
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A rigid body in 2D space
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This rigid body is free to move 
and rotate in any direction.

How many variables do we need 
to fully describe the configuration 
of this rigid body?



A rigid body in 2D space

CSCI 699: Robot Learning - Lecture 1 22

The answer is 3 variables: 𝑥, 𝑦, 𝜃
𝑦

𝑥

𝜃

0
This rigid body is free to move 
and rotate in any direction.

How many variables do we need 
to fully describe the configuration 
of this rigid body?



A rigid body in 2D space
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What if one of the end points is 
fixed?



A rigid body in 2D space
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What if one of the end points is 
fixed?

𝜃

Two of the variables are now fixed 
by two constraints:

We only need one variable: 𝜃

𝑥 = ҧ𝑥
𝑦 = ത𝑦 

This is called the degree-of-freedom 
(DoF) of the body.



A rigid body in 3D space
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• Requires 6 degrees of freedom:
• Three for position

• Three for orientation



Common joints
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Kinematic Design (Engineering Haptic Devices)
Andreas Röse



Degrees of freedom of a robot
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Left: https://en.wikipedia.org/wiki/Stewart_platform 
Right: From Flavio Firmani, University of Virginia

https://en.wikipedia.org/wiki/Stewart_platform


Grübler’s formula

𝑁 = # of bodies (including ground)
𝐽 = # of joints
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𝑚 = ቊ
3,  if planar
6,  if spatial



Grübler’s formula

𝑁 = # of bodies (including ground)
𝐽 = # of joints
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𝑚 = ቊ
3,  if planar
6,  if spatial

dof = m N − 1 − 

𝑖=1

𝐽

𝑐𝑖



Grübler’s formula

𝑁 = # of bodies (including ground)
𝐽 = # of joints
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𝑚 = ቊ
3,  if planar
6,  if spatial

dof = m N − 1 − 

𝑖=1

𝐽

𝑐𝑖

Number of independent
joint constraints



Grübler’s formula

𝑁 = # of bodies (including ground)
𝐽 = # of joints
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𝑚 = ቊ
3,  if planar
6,  if spatial

= m N − 1 − 

𝑖=1

𝐽

𝑚 − 𝑓𝑖 = m N − 1 − J + 

𝑖=1

𝐽

𝑓𝑖

dof = m N − 1 − 

𝑖=1

𝐽

𝑐𝑖



Grübler’s formula

𝑁 = # of bodies (including ground)
𝐽 = # of joints
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𝑚 = ቊ
3,  if planar
6,  if spatial

= m N − 1 − 

𝑖=1

𝐽

𝑚 − 𝑓𝑖 = m N − 1 − J + 

𝑖=1

𝐽

𝑓𝑖

dof = m N − 1 − 

𝑖=1

𝐽

𝑐𝑖



Grübler’s formula

𝑁 = # of bodies (including ground)
𝐽 = # of joints
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𝑚 = ቊ
3,  if planar
6,  if spatial

dof = m N − 1 − J + 

𝑖=1

𝐽

𝑓𝑖



An open-chain robot arm
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Controlling Assistive Robots with Learned Latent Actions
Dylan Losey et al., ICRA 2020



An open-chain robot arm
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Controlling Assistive Robots with Learned Latent Actions
Dylan Losey et al., ICRA 2020



Four-bar closed-chain mechanism
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Stewart platform
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Left: https://en.wikipedia.org/wiki/Stewart_platform 
Right: From Flavio Firmani, University of Virginia

https://en.wikipedia.org/wiki/Stewart_platform


Acrobot
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples 
Using Sparse Coarse Coding
Richard S. Sutton, NeurIPS 1995



Acrobot
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples 
Using Sparse Coarse Coding
Richard S. Sutton, NeurIPS 1995

This is called
“end-effector”



Acrobot
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples 
Using Sparse Coarse Coding
Richard S. Sutton, NeurIPS 1995

The entire 2D plane 
is the task space



Acrobot
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples 
Using Sparse Coarse Coding
Richard S. Sutton, NeurIPS 1995

This is the 
workspace 𝓦



Acrobot
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples 
Using Sparse Coarse Coding
Richard S. Sutton, NeurIPS 1995

𝜃1

𝜃2

The robot’s current configuration is:

This is called the
configuration space

𝜃1, 𝜃2 ∈ 𝓒



Acrobot
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples 
Using Sparse Coarse Coding
Richard S. Sutton, NeurIPS 1995

𝜃1

𝜃2

The robot’s current configuration is:

Forward kinematics: FK: 𝓒 → 𝓦

FK 𝜃1, 𝜃2 = (𝑥, 𝑦)

𝑥, 𝑦 ∈ 𝓦

𝜃1, 𝜃2 ∈ 𝓒



Acrobot
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples 
Using Sparse Coarse Coding
Richard S. Sutton, NeurIPS 1995

𝜃1

𝜃2

The robot’s current configuration is:

𝜃1, 𝜃2 ∈ 𝓒

𝑥, 𝑦 ∈ 𝓦

Inverse kinematics: IK: 𝓦 → 𝓒

IK 𝑥, 𝑦 = (𝜃1, 𝜃2)

Forward kinematics: FK: 𝓒 → 𝓦

FK 𝜃1, 𝜃2 = (𝑥, 𝑦)



Acrobot
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples 
Using Sparse Coarse Coding
Richard S. Sutton, NeurIPS 1995

𝜃1

𝜃2

The robot’s current configuration is:

𝜃1, 𝜃2 ∈ 𝓒

𝑥, 𝑦 ∈ 𝓦

Inverse kinematics: IK: 𝓦 → 𝓒

IK 𝑥, 𝑦 = (𝜃1, 𝜃2)

This is often not a proper function.
Because many configurations may 
lead to the same end-effector pose.

Forward kinematics: FK: 𝓒 → 𝓦

FK 𝜃1, 𝜃2 = (𝑥, 𝑦)



Okay, but why?
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Okay, but why?
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Okay, but why?
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Today…

• General course information

• Basics of robotics

• Fundamentals of machine learning
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Machine learning

Supervised learning

Given 𝑥𝑖 , 𝑦𝑖
𝑖=1

𝑛
, find a function

𝑓 𝑥 = 𝑦

(classification, regression)

CSCI 699: Robot Learning - Lecture 1 53

Unsupervised learning

value
label

…

data point
predictor

…



Machine learning

Supervised learning

Given 𝑥𝑖 , 𝑦𝑖
𝑖=1

𝑛
, find a function

𝑓 𝑥 = 𝑦

(classification, regression)
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Unsupervised learning
Given 𝑥𝑖

𝑖=1

𝑛
, find patterns

(clustering, compression, 
dimensionality reduction)

value
label

…

data point
predictor

…



Supervised learning

CSCI 699: Robot Learning - Lecture 1 55Gaussian Process Classification Model in various PPLs, Arthur Lui
Gaussian Process Regression From First Principles, Ryan Sander

Classification Unsupervised learning



Learning models

• Parametric models:
𝑦 = 𝑓𝜃 𝑥

Examples: naïve Bayes, logistic regression, neural networks
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Learning models

• Parametric models:
𝑦 = 𝑓𝜃 𝑥

Examples: naïve Bayes, logistic regression, neural networks

• Non-parametric models:
𝑦 = 𝑓 𝑥; 𝐷

Examples: K-nearest neighbors, Gaussian process regression
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dataset



Loss functions

A loss function evaluates the quality of fit in 𝑓 𝑥 ≈ 𝑦 or the 
quality of patterns in an unsupervised learning problem.

Examples:

ℓ2 loss:   𝐿 𝜃 = σ
𝑥𝑖,𝑦𝑖 ∈𝐷 𝑦𝑖 − 𝑓𝜃(𝑥𝑖)

2

Cross-entropy loss: 𝐿 𝜃 = − σ
𝑥𝑖,𝑦𝑖 ∈𝐷 𝑦𝑖 ⊤

log 𝑓𝜃 𝑥𝑖
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Minimizing the loss

• Analytical solution
• Use exact methods to find 𝜃∗ = arg min

𝜃
𝐿(𝜃)

• Occasionally possible, e.g., linear regression

• Numerical optimization
• Numerically minimize 𝐿(𝜃), e.g., gradient descent by computing ∇𝐿(𝜃)

• Much more common in robot learning research

• Stochastic optimization is often necessary for efficiency
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Neural networks

1. A perceptron
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This is not the first model taught in a machine learning 
class. But we will almost never use other models.

𝑥1
𝑖

𝑥2
𝑖

𝑥3
𝑖

𝑤1

𝑤2

𝑤3



𝑗

𝑤𝑗𝑥𝑗
𝑖 + 𝑏 𝑔 𝑔 

𝑗

𝑤𝑗𝑥𝑗
𝑖 + 𝑏



Neural networks

2. A single layer neural network
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𝑥1
𝑖

𝑥2
𝑖

𝑥3
𝑖

𝑥4
𝑖

𝑦1
𝑖 = 𝑔 𝑤1

⊤𝑥𝑖 + 𝑏1

𝑦2
𝑖 = 𝑔 𝑤2

⊤𝑥𝑖 + 𝑏2

𝑦3
𝑖 = 𝑔 𝑤3

⊤𝑥𝑖 + 𝑏3

𝑦 = 𝑔 𝑊⊤𝑥 + 𝑏



Neural networks

3. A deep neural network
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𝑥1
𝑖

𝑥2
𝑖

𝑥3
𝑖

𝑥4
𝑖



Backpropagation
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Backpropagation
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Backpropagation
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Activation functions
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𝑔 should not be a linear function.

Analysis Of Optimizing Neural Networks And Artificial Intelligent 
Models For Guidance, Control, And Navigation Systems
Rahul Jayawardana, Thusitha Sameera Bandaranayake



Recurrent neural networks (RNN)
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Many-to-one



Recurrent neural networks (RNN)
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One-to-many



Recurrent neural networks (RNN)
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Many-to-many



Recurrent neural networks (RNN)
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Many-to-many



Deep RNNs
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Bidirectional RNNs
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LSTMs and GRUs
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Transformers
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Attention is all you need
Vaswani et al., NeurIPS 2017



Today…

• General course information

• Basics of robotics

• Fundamentals of machine learning
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Until next week…

Homework assignments will include programming with a 
machine learning library: PyTorch.

There are many online PyTorch tutorials. For what we covered 
today, check out:

• https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html 

• https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html 
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https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html


Next time…

• Basics of computer vision for robotics

• Representation learning 
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