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Office hours

* Erdem:
* Friday, 11:00am — 12:00noon, PHE 214

* Ishika:
* Thursday, 3:30pm — 4:30pm, RTH 4t Floor Lounge
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Online resources

* Course website: https://liralab.usc.edu/csci699/
* Piazza: https://piazza.com/usc/tall2024/csci699
* Gradescope: https://www.gradescope.com/courses/820822
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What is a robot?

* An embodied artificial intelligence
* A machine that can autonomously carry out useful work

 An artificial device that can sense its environment and
purposefully act on or in that environment

Robotics: A Very Short Introduction

Winfield, 2012 CSCI 699: Robot Learning - Lecture 1 5



See-think-act cycle

Autonomous Mobile Robots
Siegwart et al.
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Why robot learning?

Designing controllers is hard
* Requires good understanding of the system
* Doesn’t scale well to high-dimensional systems

* “Manipulation breaks all the rigorous/reliable approaches I know for control.”
— Russ Tedrake (MIT / TRI)

From: Josh Tobin CSCI 699: Robot Learning - Lecture 1 8



Prerequisites

* Probability theory

* Calculus

* Linear algebra

* At least one programming language (preferably, Python)

* Programming assignments will be in Python.

* Recommended:
« Familiarity with basic concepts in machine learning
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What's covered?

* Basics of... * Learning from human feedback

* Robotics e Sim-to-real transfer
* Machine learning

* Computer vision Meta—learmng

» Representation learning * Sate and robust learning

* Reinforcement learning * Multi-agent learning

* Robot learning using natural

* Imitation learning / IRL
language
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What's NOT covered?

Autonomous Mobile Robots
Siegwart et al.
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What's NOT covered?

* Robot operating system (ROS)
« CSCI 545: Robotics

* Simultaneous localization and mapping (SLAM)
« CSCI 545: Robotics

* Grasping and manipulation
* CSCI 699: Deep Learning for Robotic Manipulation
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Textbook & Readings

* No textbook is required.
* All readings will be available on course website.

o If I were to recommend textbooks for this class...

* Reinforcement Learning: An Introduction by Sutton and Barto

* Modern Adaptive Control and Reinforcement Learning (MACRL) by
Bagnell, Boots, and Choudhury

* Principles of Robot Autonomy by Lorenzetti and Pavone
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Assignments

* One class project (40%)
* One homework assignment (15%)
* Three paper presentations (3 x 15%)
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Homework assignments

* Three homework assignments in total — you choose which
one(s) you would like to do!
* Basics of robotics & machine learning & computer vision
* Reinforcement learning
 Imitation learning & intent inference & shared autonomy

* Both theoretical and programming components

* Programming parts will be in Python

* No ROS knowledge required

* The submissions will be online, due at 12 midnight
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Class presentation

* 15-25 minutes presentation, depending on the week/paper

* Should include an extensive discussion of the paper
* Motivation
* Prior work
* Methods
* Results

* Discussion
* Both the positive and the negative aspects of the paper!

* 5 minutes Q&A
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Course project

* The project will be done in groups of 2 or 3.

* Feel free to reach out to me if you have a good reason to do it
individually or as a group of more than 3 students.
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Course project

The project must have both robotics and machine learning
components.

Examples:

* Application-dependent improvements over an existing robot
learning method

* Anew application of an existing robot learning technique
* Anovel method that may have potential benefits
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Course project

Component Contribution to Grade

Project Proposal Report 5% October 20th
Project Milestone Report 5% November 17th
Project Presentation (Possibly with Demo) 10% December 6th
Final Project Report 15% December 8th
Peer Review 5% December 15th
Total 40%
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Today...

e Basics of robotics
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A rigid body in 2D space
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This rigid body is free to move
and rotate in any direction.

S —

How many variables do we need
to fully describe the configuration
of this rigid body?
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A rigid body in 2D space

— —

r

This rigid body is free to move
and rotate in any direction.

o
=
———_J

How many variables do we need
to fully describe the configuration
of this rigid body?

The answer is 3 variables: (x, y, 6)

,__——_——
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A rigid body in 2D space
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What if one of the end points is
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A rigid body in 2D space

r

—

S —
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What if one of the end points is
fixed?

Two of the variables are now fixed
by two constraints:

<l R

X
y
We only need one variable: 6

This is called the degree-of-freedom
(DoF) of the body.

24



________________________________________________________________________
A rigid body in 3D space

* Requires 6 degrees of freedom:
* Three for position
 Three for orientation
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Common joints

Revolute joint Prismatic joint Helical joint Planar joint

Cylindrical joint Spherical joint Universal joint

Kinematic Design (Engineering Haptic Devices)

Andreas Rose CSCI 699: Robot Learning - Lecture 1 26



Degrees of freedom of a robot

Left: https://en.wikipedia.org/wiki/Stewart platform
Right: From Flavio Firmani, University of Virginia
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Grubler’s formula

] = # of joints m =

N = # of bodies (including ground) 3, if planar
6, if spatial
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Grubler’s formula

] = # of joints m =

N = # of bodies (including ground) 3, if planar
6, if spatial

e

dof=m(N—1) — ) ¢

=1
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Grubler’s formula

N = # of bodies (including ground) {3, if planar
m =

J = # of joints 6, if spatial

Number of independent

dof = m(N — 1) — Ci — joint constraints

e

=1
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Grubler’s formula

] = # of joints m =

N = # of bodies (including ground) 3, if planar
6, if spatial

e

dof=m(N—1) — ) ¢

=1

J
=m(N-1) = ) (m—f)
=1
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Grubler’s formula

J = # of joints m=

N = # of bodies (including ground) 3, if planar
6, if spatial

e

dof=m(N—1) — C;

=1

J J
=m(N—1)—2(m—fi)=m(N—1—D+zfi
i=1 1=1
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Grubler’s formula

] = # of joints m =

N = # of bodies (including ground) 3, if planar
6, if spatial

J
dof=m(N—1—])+Zfi
=1
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An open-chain robot arm

Controlling Assistive Robots with Learned Latent Actions

Dylan Losey et al,, ICRA 2020 CSCI 699: Robot Learning - Lecture 1 34



An open-chain robot arm

Controlling Assistive Robots with Learned Latent Actions

Dylan Losey et al., ICRA 2020 CSCI 699: Robot Learning - Lecture 1 35



Four-bar closed-chain mechanism

From Rupesh Dewangan, GrabCAD CSCI 699: Robot Learning - Lecture 1 36



Stewart platform

Left: https://en.wikipedia.org/wiki/Stewart platform
Right: From Flavio Firmani, University of Virginia
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Acrobot

From: Gymnasium, Farama Foundation

Generalization in Reinforcement Learning: Successful Examples

Using Sparse Coarse Coding CSCI 699: Robot Learning - Lecture 1 38
Richard S. Sutton, NeurIPS 1995



Acrobot

r — — b |
I
I
I
\
This is called

“end-effector”

\

\
I
I
I
\
I
l

From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples
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Acrobot
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The entire 2D plane |
is the task space |
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples
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Acrobot

r _ - |
: The robot’s current configuration is:
I (01' 02) €C
\
This is called the

configuration space

\
l
I
I
\
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples
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e
Acrobot

The robot’s current configuration is:

(6,,6,) €C

S —

Forward kinematics: FK: C - W
FK((Bl, 82)) = (x, y)
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples
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e
Acrobot

The robot’s current configuration is:

(6,,6,) €C

S —

Forward kinematics: FK: C - W
FK((Bl, 82)) = (x, y)

Inverse kinematics: IK: W - €
IK((x,y)) = (61,65)
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From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples
Using Sparse Coarse Coding CSCI 699: Robot Learning - Lecture 1 4+

Richard S. Sutton, NeurIPS 1995



e
Acrobot

The robot’s current configuration is:

(6,,6,) €C

S —

Forward kinematics: FK: C - W
FK((Bl, 82)) = (x, y)

Inverse kinematics: IK: W - €
IK((x,y)) = (61,65)

This is often not a proper function.
Because many configurations may
— —' lead to the same end-effector pose.

\
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\
|
l

From: Gymnasium, Farama Foundation
Generalization in Reinforcement Learning: Successful Examples
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Okay, but why?

Initial

From: Nikolay Atanasov, UC San Diego

CSCI 699: Robot Learning - Lecture 1

Initial
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Okay, but why?

Initial

Initial

I i « Goal
Goal
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Okay, but why?

/

Initial

‘ Initial

« Goal

[
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Okay, but why?

GoaL(
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Today...

* Fundamentals of machine learning
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Machine learning

Supervised learning Unsupervised learning

Given {(xi, yi)}?zl, find a function

fx) =y
data point value
predictor label

(classification, regression)
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Machine learning

Supervised learning Unsupervised learning
o : A L
Given {(xl, yl)}:l:l, find a function Given {x }i= y find patterns
fx)=y
data point value
predictor label

(clustering, compression,

(classification, regression) dimensionality reduction)
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Supervised learning

Classification Unsupervised learning

Gaussian Process Classification Model in various PPLs, Arthur Lui CSCI 699: Robot Learning - Lecture 1 55
Gaussian Process Regression From First Principles, Ryan Sander



Learning models

e Parametric models:

y = fo(x)

Examples: naive Bayes, logistic regression, neural networks
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Learning models

e Parametric models:

y = fo(x)

Examples: naive Bayes, logistic regression, neural networks

dataset

* Non-parametric models: 7
y = f(x;D)

Examples: K-nearest neighbors, Gaussian process regression
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[L.oss functions

A loss function evaluates the quality of fitin f(x) = y or the
quality of patterns in an unsupervised learning problem.

Examples:
£? loss: L(B) = Z(xi,yi)ED(y" — fo (xi))z

Cross-entropy loss: L(O) = — Z(xi,yi)eD(yi)T log fo (xl)
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R R R R R R,
Minimizing the loss

* Analytical solution
» Use exact methods to find 8 = arg mgn L(60)

* Occasionally possible, e.g., linear regression

* Numerical optimization
* Numerically minimize L(8), e.g., gradient descent by computing VL(8)
* Much more common in robot learning research
* Stochastic optimization is often necessary for efficiency
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This is not the first model taught in a machine learning
Neural netWO I'kS — class. But we will almost never use other models.
1. A perceptron

X1 Wq
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Neural networks

2. Asingle layer neural network

=iy

yi = g(wix' + by)

[ I

yi=g(wix'+b,) mmmp y=gW'x +b)

[ I

ys = g(ws x' + bs)
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Neural networks

3. A deep neural network
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Backpropagation

From: Marco Pavone, Stanford University CSCI 699: Robot Learning - Lecture 1 63



Backpropagation

From: Marco Pavone, Stanford University CSCI 699: Robot Learning - Lecture 1 64



Backpropagation

From: Marco Pavone, Stanford University CSCI 699: Robot Learning - Lecture 1 65



Activation functions

g should not be a linear function.

Sigmoid " Leaky RelLU
. max(0.1z, z)
l14e—* 4 | - .
tanh Maxout -
tanh(.’li) " max(w{ z + by, w3l x + by)

ReLU | ELU
max (0, z) {:r( ; x> 8
; 2 ale’ — T < : o

Analysis Of Optimizing Neural Networks And Artificial Intelligent
Models For Guidance, Control, And Navigation Systems CSCI 699: Robot Learning - Lecture 1
Rahul Jayawardana, Thusitha Sameera Bandaranayake
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Recurrent neural networks (RNN)
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Recurrent neural networks (RNN)

One-to-many
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Recurrent neural networks (RNN)

Many-to-many
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Recurrent neural networks (RNN)

Many-to-many
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Deep RNNs

Y
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Bidirectional RNNs

From: Stanford CS 230
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LLSTMs and GRUs

LSTM GRU

forget gate cell state reset gate

v

o= === a-
e = m omomom omo-
= === ==

y
A3

input gate output gate update gate
sigmoid tanh pointwise pointwise vector
multiplication addition concatenation

From: Michael Phi CSCI 699: Robot Learning - Lecture 1 73



Transformers

Attention is all you need
Vaswani et al., NeurIPS 2017
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Today...

 General course information
e Basics of robotics

* Fundamentals of machine learning
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Unti]l next week...

Homework assignments will include programming with a
machine learning library: Py Torch.

There are many online PyTorch tutorials. For what we covered
today, check out:

* https://pytorch.org/tutorials/beginner/blitz/tensor tutorial.html

* https://pytorch.org/tutorials/beginner/blitz/autograd tutorial.html
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Next time...

* Basics of computer vision for robotics

* Representation learning
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